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THEORETICAL ANALOGIES BETWEEN (GENERALIZED) LAMB AND RAYLEIGH WAVES
ON INSONIFIED, SUBMERGED, ELASTIC, HOLLOW AND SOLID CURVED BODIES

GUILLERMO C. GAUNAURD(a) and MICHAEL F. WERBY(b)

(a) Naval Surface Warfare Center, Research Dept., (R-42)
Silver Spring, Maryland 20903-5000 USA

(b) Naval Ocean and Atmospheric Research Laboratory
Code 221, Bay St. Louis, Mississippi 39529 USA

We analyze resonance features in the fashion and terminology of the resonance

backscattering cross-sections (BSCS) of scattering theory (RST)(3
), viz.,

an air-filled steel spherical shell [f2(1,X) n+le21('_ 2i( i nt +
submerged in water and insonified by a (+x
plane c.w. sound wave. We generalize the
concepts of Rayleigh (R), whispering 1 (2)
gallery (WG), and Lamb waves in half + z1 -
spaces and plates in vacuo to curved F -Rez;'-iimz'I
solid and hollow bodies immersed in
fluids. We study how each shell-wave where the quantities F , z, z ..have
manifests itself in the various frequency all been defined before.(/.i TAe phase
bands of the body's BSCS. We display velocities can be found from the (real)
dispersion plots for the phase velocities roots of the real parts of the
of the various waves in wide bands, and denominators of the fraction term of
compare Lamb and R/WG waves as the shell Equation (2) by means of the relation(l"4):
becomes a solid sphere to extract their
similarities. The fluid-loadings, the cP(x) - X
shell thickness, and the curvatures of - n= (3)
the body generate novel waves in the C1  n ./2
shell and its BSCS that could have never where the are the real (resonance)
emerged from earlier models that ignored roots. We note that for shells we have
these effects, and which we analyze here. (spherically modified) Lamb modes and

surface waves. In the solid sphere limitI. THEORETICAL BACKGROUND (b.+), a "corresponding" Rayleigh speed

The BSCS of an air-filled spherical steel is obtained which is slightly higher than
the one ordinarily found for flatshell of radii a and b immersed in water iS)

is (1) interfaces, viz.,

'a 2 ' = (0.87+1.12v) Cs. (4)

(1) II. NUMERICAL RESULTS
(-) "(2n+l)A,(X) 2 Figure 1 shows the isolated

n. Iresonances of the n=0 mode of a fluid-

where- xk Ia, k1=0/c, w=circular loaded steel shell of increasing
frequency, and c1=sound speed in the thickness. These resonances are isolated
outer fluid (medium #1). The by the suppression of suitable (rigid)
coefficients A,(x) are determ'ined from modal backgrounds. The thicknesses are
six boundary conditions at the two as indicated in Figure 1. We see that
interfaces, r=a,b. They come out to be thin shells support fewer modes and
ratios of two 6x6 determinants which we isolated resonances than thicker ones.
have spelled-out in earlier work.(2) They Up to h' 20% only one or two resonances
all depend on x. The present formulation are visible in the displayed bands. For
is exact since the shell motions are thicker shells we see as many as f=8
described by 3-dimensional features in the same bands. The t=l
elastodynamics. Each partial-wave, feature would be the spherical analogue
I f.(u,x)}, contained within the sum in of the Rayleigh resonance for a solid
Equation (1) can be decomposed into sphere, while all the others (V!2) would
backgrounds and resonances in the usual correspond to the whispering gallery
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FIG.2 : Dispersion plots for the phase velocity
Zgf the Ao Lambo wave in the steel spherical

FIG.l Isolated resonances within the zeroeth shell within the frequency band: 0. X-kla 4100.a-tisymmetric (i.e., Ao ) Lamb mode of a fluid- The relative thickness in each case is h = h/a =
loaded steel spherical shell of increasing rela- 10%, 20%, 40%, and 60%. For large values of x thetive thickness, viz., hla h/a = 1%, 2.5%,5%, 10%, the value of the Rayleigh speed cR seem to be20%, 40%, 60%, 80%, 90%, 95%, and 100% (the solid approached in all cases. (Note the upmu-ds bendsphere case). The modal resonances or residual of the upper plots at low frequencies, ix0+.
responses are labeled by the index 1.
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OTS OF PHASE VEL vs. SHELL THICKNESS FOR MODES: 20.30
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FIG. 3 :The phase velocity of any one of the _{l modes can be plotted as a function of shell- - ,

I.1

thickness h'. Here we display the situation for
modes A10 and A15. The phase velocity of all the
modes t;,-i& to avalue near 3.2 Was in the solid
sphere limit (i.e., for W-1-). This value is -- s- - ------------- - -

about 40%, and tends to remain constant above it.r V1

- - , 0.1 74
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4o OOE=.FIG. 3t : Phase velocities of various Lab modes
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FIG.4: Dspesionplos ofthephase velocity

• g 1 0 f r asteel spherical 1 o4
shell1 in water of thickness h'- 1%, 2.5%, St, 10%, FIG. 6 cP versus x for the w Lm ave (or
land 20%. ALI curves seem to approach the value of WO-) -Zra steel spherical shel in water of fiveCs as x))l. Note that this mode Soexists above thicknesses. mod~e A^ exists Only for x>zc(i.e.,and below the "coincide' frequencyx c .  for P> cI -- solid I031m). All curves approach CRfor X*1l and bend upwards for x.O+.
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resonances. However, the t=i feature, determine the coincidence frequency, via
present here in all the modes, is due to the coincidence condition: CP = c. The
the flexural (shell) Lamb wave A0. This curves in Fig. 6 are drawn in solid lines
is the spherical counterpart of the well- for cP>cl, and in dashed lines for cP<c.
studied Xo surface wave for flat plates. In this example, c, = 1.5 Km/s. At
This flexural or bending shell wave higher frequencies (i.e., x>>l) all
"corresponds" to the Rayleigh wave for branches approach the Rayleigh speed c
solid spheres (for b-0+), and ultimately found above. This high-frequency limit
to the Rayleigh wave in flat elastic is approached faster the thicker the
half-spaces (for a>>l). We exhibit the shell becomes. In the "subsonic" region
dispersion plots for the phase velocities cp<c 1 , where A is dormant, there are
of this (generalized) A (Lamb) wave in other water-borne and curvature waves
Fig. 2 for four shell thicknesses, present, which we will discuss elsewhere.
indicated there. For h'<40% the At the coincidence frequency x=x , strong
dispersion plot shows an upward bend at flexural vibrations are excited in the
low frequencies due to the (double) shell which are communicated to its BSCS.
curvature of the shell. This behavior Further details will appear elsewhere,
differs from that in earlier works which particularly the connection between
use flat plate theories to generate the (generalized) Lamb-poles for a shell and
dispersion plots. The dispersion plots the Rayleigh poles for an elastic sphere
for any one of the shell modes can be in water. These later ones have already
(and have been) generated and plotted received some attention" ).

versus h'. Figure 3 displays them for
the Al0 and A15 modes. These plots are III. CONCLUSIONS
obtained from Equation (3). We note that
the phase velocity cP of all the modes The 1=1 antisymmetric flexural Lamb
approaches a value near 3.1 Km/s as h'- resonance (or leaky surface wave) present
100%. This value is slightly above the in the modes of a steel spherical shell
value of cR predicted by Equation (4). in water is the analogue of the
Figure 4 displays the phase velocities cp  (generalized) Rayleigh resonance (or
of the S0 Lamb wave mode (or wave or leaky surface wave) of a submerged
branch) versus x in the band: 0SxS190, elastic sphere. Plotting the dispersion
for five (indicated) shell thicknesses curves (viz., cP vs. x) for a number of
h'. The S0  mode exists for all Lamb waves (or branches), including the
frequencies above and below A,, we showed that cP-c I for x>>l.
"coincidence." All the curves seem to Further, the c? of all the modes (i.e.,
approach the value of cs from above, as n=1,2,...20,30...) approaches the value
x>>l. At low frequencies all curves show of c for that spherical mode in the
an upward bend due to the shell's (non- solil-sphere limit (i.e., for h'-100%).
zero) curvatures. For either broader The key finding is the set of dispersion
bands or thicker shells, progressively plots in Figure 5 for the first few
more Lamb modes enter the picture. modes/branches of a steel shell in water.
Figure 5 (upper), constructed in: These plots, displayed in very broad
05x:500, shows five such modes or bands (05xS500) differ from the
branches when h'=5%. These are A0 , So, corresponding set for flat-plates,
A1, S and S .  They all have vertical particularly at low frequencies where the
asymptotes (cut-off frequencies) at curvature effects are strongest. The
various values of x. The bottom part of phenomenon of "coincidence" (6) seems to be
Fig. 5 enlarges the band: 0:x:I20 in responsible for the region of st Ong
which only the two familiar modes A0 and flexures that develops in the BSC of
S0 are present. Numbers along the shells around the coincidence frequency,
various branches are values of n at the xc-(h (Note. hl= (a-b)/a].
various frequencies x. They are obtained
from a partial-wave expansion of the REFERENCES
residual responses I fn(x)-f,(rig)(x)l for I. V. Ayres et al., Intern. J. Solids
higher values of n, similar to that shown and Structures 23, 937-946, (1987).
in Fig. 1 for n=O. Figure 6 shows the 2. G. Gaunaurd and M. Werby, Applied
dispersion plots for the cP of the single Mech. Reviews 43, 171-208, (1990).
Lamb mode A vs. x for h'= 1%, 2.5%, 5%, 3. G. Gaunaurd, Applied Mech. Reviews
10% and 20%. This plot is analogous to 42, 143-192, (1989).
that in Fig. 4, but now for A0 rather 4. G. Gaunaurd and M. Werby, J. AcOust.
than S0 . These are the two most Soc. Amer., &Z, 2021-2033, (1987).
important ones at (relatively) low 5. I. Viktoroff, ayJlgka nd L992
frequencies. We again note the upward Wav2s, Plenum Press, N. Y. (1967)-
bend of all the curves in Figure 4 as 6. L. Cremer et al., Structure-g
x-0. Mode A0 only exists above the Sound, Springer, New York (1966).
coincidence(6) frequency x . In fact, it is 7. L. Pitts et al., J. Acoust. Soc.
by means of plots of this type that we Amer., 60, 373-377, (1976).
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